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Introduction

The clinical treatment of poisoning by organophospho-
rus compound (OP)-based acetylcholinesterase (AChE) 
inhibitors, i.e. pesticides and nerve agents, did not ex-
perience fundamental change since the first use of the 
oxime pralidoxime (2-PAM, Figure 1) in 19581. Basically, 
the specific treatment of OP-poisoning is a combination 
of an anticholinergic drug, mostly atropine, and an oxime 
which is intended to reactivate OP-inhibited AChE2. The 
antidotal therapy is supplemented by benzodiazepines, 
catecholamines, antibiotics, and further drugs depend-
ing on the clinical signs and symptoms3–6.

Apart from pralidoxime, only few oximes have been 
used in human OP-poisoning in the past 50 years7. 
Obidoxime (Figure 1) was first used in the early 1960s8 
followed by trimedoxime (TMB-4, Figure 1)9 while HI-6 

(Figure 1) was tested only in few cases of OP pesticide 
poisoning10.

Apart from pralidoxime, only few oximes have been 
used in human OP-poisoning in the past 50 years7. 
Obidoxime (Figure 1) was first used in the early 1960s8 
followed by trimedoxime (TMB-4, Figure 1)9 while HI-6 
(Figure 1) was tested only in few cases of OP pesticide 
poisoning10.

Apart from pralidoxime, only few oximes have been 
used in human OP-poisoning in the past 50 years7. 
Obidoxime (Figure 1) was first used in the early 1960s8 
followed by trimedoxime (TMB-4, Figure 1)9 while HI-6 
(Figure 1) was tested only in few cases of OP pesticide 
poisoning10.

Although only very few oximes are used clinically 
a huge number of oximes were synthesized in the past 
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decades mainly in Germany, USA, Croatia, Israel, Czech 
Republic, and Korea7,11. The main purpose of these oxime 
development programs was to find oximes which are 
more effective than the clinically used compounds in 
nerve agent poisoning. The ultimate goal of this develop-
ment was the search for highly effective oximes which can 
be used in autoinjectors with limited volume for self and 
buddy aid. Experimental oximes synthesized so far are 
in most cases derivatives of the mono-pyridinium oxime 
pralidoxime or the bis-pyridinium oxime obidoxime7 and 
only few are bearing additional imidazolium or quinucli-
dinium groups12.

There is convincing evidence that the main mecha-
nism of action of oximes is the reactivation of OP-inhib-
ited AChE by removal of the phosphoryl- or phosphonyl-
moiety from the active site serine7,13–15. By restoring the 
function of the pivotal enzyme AChE OP-induced dis-
ruption of the cholinergic signalling chain may be coun-
teracted and life-saving in severe cases of OP-poisoning. 
The ability of oximes to reactivate OP-inhibited AChE may 
be quantified in vitro by determination of the different 
reactivation rate constants (Figure 2). According to the 

scheme the ability of oximes to reactivate OP-inhibited 
AChE is determined by the affinity (1/K

D
) and the reac-

tivity (k
r
). The efficiency of an oxime may be quantified by 

the second order rate constant k
r2

 determined by the ratio 
of k

r
 and K

D
16. Based on these constants the reactivating 

ability of oximes may be estimated prior to in vivo evalu-
ation of the oxime efficacy in animals or humans.

In the past decade we determined the reactivation 
rate constants for a variety of oximes with a large number 
of structurally different OP using AChE from different 
species16–23. Hereby it became apparent that the ability of 
oximes to reactivate OP-inhibited AChE is strongly de-
pendent on the structure of the oxime, the OP-AChE con-
jugate and the AChE source. Due to, in part substantial, 
differences between human and animal AChE further 
considerations will focus only on human AChE. More-
over, only reactivation data from identical experimental 
set-up were considered for comparison, i.e. reaction con-
ditions at pH 7.4, 37°C, in the absence of substrate and 
after removal of free OP.

The determination of the affinity and reactivity of 
oximes revealed enormous differences. The spectrum 
ranged from complete inability of oximes to reactivate 
inhibited AChE (e.g. HI-6 and tabun), hardly measurable 
k

r
 and K

D
 values to utmost high reactivity and affinity. 

Table 1 shows the extremes determined so far. Accord-
ingly, the difference between the determined dissocia-
tion and reactivity rate constants is almost 2000 and 3000 
fold, respectively.

Animal experiments and clinical data demonstrate that 
the therapeutic efficacy of oximes is also determined by 
additional factors3,4,24–29. Post-inhibitory reactions of the 
OP-inhibited AChE, i.e. spontaneous reactivation and ag-
ing (Figure 2), may enhance or impair the oxime efficacy. 
Further factors include pre-treatment, OP body load and 
competing acetylcholine concentration, time interval 

Table 1. Highest and lowest reactivation rate constants of oximes 
with OP-inhibited human AChE.
Oxime OP k

r
 (min−1) K

D
 (µM)

Pralidoxime MFPßCh# 0.002a  
Methoxime n-Butylsarin 5.91b  
Pralidoxime Methamidophos  2.1c

Pralidoxime MFPhCh§  3837d

AChE, acetylcholinesterase; affinity (K
D

) and reactivity (k
r
) 

constants; OP, organophosphorus compounds.
a,dfrom18, bfrom19, cfrom16.
#Methylfluoro-ß-phosphonylcholine.
§Methylfluorophosphonylhomocholine.
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Figure 1. Chemical structures of important oximes.

Table 2. Reactivation rate constants of selected oximes and OP.
Oxime OP k

r
 (min−1) K

D
 (µM)

Obidoxime Tabun 0.04 97.3
Obidoxime Cyclosarin 0.395 945.6
Pralidoxime Cyclosarin 0.182 3159
HI-6 Cyclosarin 1.3 47.2
Affinity (K

D
) and reactivity (k

r
) constants; OP, organophosphorus 

compounds.
Data are from18.

[EP] + [OX] [EPOX] [E] + [POX]
KD kr

Figure 2. Reaction scheme for the reactivation of organophosphate-
inhibited acetylcholinesterase (AChE) by oximes. The respective 
concentrations are: [EP] the phosphylated AChE, [OX] the 
reactivator, [EPOX] the Michaelis-type phosphyl-AChE-oxime-
complex, [E] the active enzyme and [POX] the phosphylated 
oxime. K

D
 is equal to the ratio [EP] × [OX]/[EPOX] and describes 

the dissociation constant which is inversely proportional to the 
affinity of the oxime to [EP], and k

r
 is the rate constant for the 

displacement of the phosphyl residue from [EPOX], indicating the 
reactivity of the oxime.
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between poisoning and onset of treatment, oxime dos-
ing and duration of treatment. In view of multiple factors 
influencing the efficacy of oximes in OP-poisoning there 
is an ongoing debate on the benefit of oximes and on the 
necessity to develop more effective oximes as antidotes 
against pesticide and nerve agent poisoning2–4,11,28–31.

These controversies prompted us to use theoretical 
models, based on kinetic data obtained under identi-
cal experimental conditions, to characterize the re-
quirements of an oxime as an effective antidote in OP-
 poisoning.

Which level OF AChE activity is necessary?

Impairment of neuromuscular transmission at respira-
tory muscles is one of the life threatening effects of OP 
which cannot be counteracted by anticholinergics32. 
Hence, the reactivation of AChE at neuromuscular syn-
apses is a key parameter for the assessment of oxime 
efficacy in vivo. Unfortunately, synaptic AChE is hardly 
accessible to direct monitoring and the evaluation of 
oxime effects has to be based on surrogate parameters. 
Repetitive measurement of erythrocyte AChE activity can 
be used to follow changes in AChE activity as a result of 
oxime treatment provided that erythrocyte AChE reflects 
synaptic AChE.

Recently, in vitro studies using a dynamic model with 
real-time determination of membrane-bound AChE ac-
tivity demonstrated almost identical kinetics of human 
erythrocyte and intercostal muscle AChE following inhi-
bition by OP and reactivation by oximes33,34. A thorough 
analysis of data from OP pesticide poisoned patients 
revealed that erythrocyte AChE levels higher than 40% 

of normal were accompanied by normal neuromuscular 
transmission26,35.

Consequently, an effective oxime does probably not 
require a complete reactivation of inhibited AChE and a 
40% reactivation will be considered as lower edge for fur-
ther considerations. Now, it was tempting to determine 
whether presently available oximes could meet this goal. 
Initial calculations were performed using determined 
reactivation rate constants16 and excluding excess inhibi-
tor and premature aging. Figure 3 shows the marked dif-
ferences between the selected OP. None of the selected 
oximes would be able to reactivate tabun-inhibited AChE 
at clinically used oxime concentrations within a reason-
able time, primarily due to low reactivity (Figure 3A). 
With cyclosarin-inhibited AChE HI-6 (high reactivity and 
affinity) and MMB-4 (high reactivity) should result in a 
rapid and complete restoration of enzyme activity within 
a few minutes (Figure 3B), obidoxime and 2-PAM would 
fail due to low affinity. With paraoxon- and methamido-
phos the oximes should be able to reactivate the enzyme 
although HI-6 would result in a rather slow increase of 
paraoxon-inhibited AChE activity (Figure 3C).

Reactivation of OP-inhibited AChE by 
oximes: model calculations

Initial model calculations were performed at following 
conditions:

Complete AChE inhibition without premature aging,•	
Use of fixed oxime concentrations at a clinical rele-•	
vant level of established oximes, i.e. 10 and 100 µM3,26, 
and

100 OBI
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Figure 3. Calculated acetylcholinesterase (AChE) activities of tabun- (A), cyclosarin- (B), paraoxon-ethyl- (C), and methamidophos-
inhibited AChE (D) after reactivation by obidoxime (OBI, 10 µM), 2-PAM (100 µM), HI-6 (50 µM), and MMB-4 (100 µM). Based on 
experimental reactivation rate constants16, the AChE activities were calculated using the equation AChE

t%
 = 100 × (1-exp−kobs × t).
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Use of four different affinities and reactivities of theo-•	
retical oximes in the limits of experimentally deter-
mined numbers (Table 1)16.

One important determinant for the efficacy of oximes is 
the reactivation velocity (half-time t

1/2
) which is deter-

mined by the reactivity (k
r
) and affinity (1/K

D
) as well as 

by the concentration of an oxime (Equation 1)2.

t
K OX

k OX
D

r
1/2 ln 2

[ ]

[ ]
= ×

+
×







 

(1)

Figure 4 shows the reactivation half-time in relation 
to the reactivity rate constants at different K

D
 values. 

Hereby, a t
1/2

 of 5 min was considered as upper limit since 
this was shown to be a reasonable value in OP pesticide 
poisoned patients36. This example demonstrates that a 
certain level of oxime reactivity and affinity is necessary 
to achieve the desired reactivation half-time. At clini-
cally relevant oxime concentrations, i.e. between 10 and 
100 µM, k

r
 of 0.1 min−1 at a K

D
 ~ 10 µM would be the lower 

limit. Consequently, markedly higher k
r
 values would be 

necessary at lower affinities of the oxime. Figure 4B shows 
additionally the corresponding reactivation half-times of 
obidoxime with tabun-inhibited AChE and of obidoxime, 
pralidoxime, and HI-6 with cyclosarin-inhibited AChE at 
an oxime concentration of 100 µM. This example demon-
strates the relevance of adequate reactivities and affini-
ties of oximes.

Apart from the reactivation velocity the oxime con-
centration required for the regeneration of a defined 
part of inhibited AChE is an important factor for defining 
properties of oximes2.

[ ]
1

*

ln 0

0

OX
K
t k

v v

v v

D

r

t

i

= −
+

−
−







 

(2)

Equation 2 may be used for calculating the oxime 
concentration necessary to obtain a certain fraction of 
reactivated enzyme within a given time in the absence 
of excess inhibitor17. At clinically relevant conditions, i.e. 
40% reactivation within 10 min (i.e. 2 × t

1/2
), the minimal 

requirements for an oxime would be a k
r
 of 0.1 min−1 

and a K
D

 of 100 µM (Figure 5). Lower oxime reactivity 
would result in an enormous rise of the required oxime 
concentration far above the therapeutic range while 
higher K

D
 values could be compensated by a substantial 

increase in reactivity. At the anticipated conditions (40% 
reactivation within 10 min) and a k

r
 < 0.052 min−1 the de-

nominator would become positive resulting in negative 
oxime concentrations. Therefore, Figure 5 shows only 
calculations with k

r
 values of 0.1, 1, and 4 min−1. Again, 

the results of the model calculations are supported by 
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m
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Figure 5. Double-logarithmic plot showing the relationship 
between oxime concentration (µM) and dissociation constant (K

D
 

in µM). Oxime concentrations necessary to obtain 40% reactivation 
of inhibited acetylcholinesterase within 10 min were calculated 
according to17 for three different oxime reactivity constants (k

r
) 

of 0.1, 1 and 4 min−1. The hatched area resembles the range of 
clinically used oxime concentrations. In addition, necessary 
oxime concentrations of selected oximes and organophosphorus 
compounds were included using measured reactivation rate 
constants (cf. Table 2): Cyclosarin and pralidoxime (+), obidoxime 
(*), and HI-6 ().
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Figure 4. Double-logarithmic plot showing the relationship 
between reactivation half-time (t

1/2
, min) and oxime reactivity 

(k
r
 in min−1). The t

1/2
 was calculated using equation (1) assuming 

five different dissociation constants (K
D

), i.e. 1 µM, 10 µM, 100 µM, 
1000 µM, and 3000 µM for two different oxime concentrations, i.e. 
10 µM (A) and 100 µM (B). The dashed line indicates a reactivation 
t

1/2
 of 5 min. In addition, reactivation half-times of selected 

oximes and organophosphorus compounds were included using 
measured reactivation rate constants (cf. Table 2): Tabun and 
obidoxime (x), cyclosarin and pralidoxime (+), obidoxime (*), 
and HI-6 ().
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calculating the necessary oxime concentrations for obi-
doxime, pralidoxime, and HI-6. It becomes evident that 
for the adequate reactivation of cyclosarin-inhibited 
AChE by pralidoxime extraordinary high and toxic oxime 
concentrations would be required to achieve the desired 
reactivation. On the other hand, the high reactivity and 
affinity of HI-6 would result in adequate reactivation with 
very low oxime concentrations.

Affinity of oximes towards native AChE and 
therapeutic concentration

Oximes inhibit reversibly AChE7 and the dissociation 
constant K

i
 of the oxime from the substrate-free human 

AChE was determined to be in the range of 150–500 µM 
for obidoxime, pralidoxime, HI-6, TMB-4, and MMB-42-

,37–40. The consequence of the intrinsic inhibitory potency 
of oximes, which may contribute to the observed oxime 
toxicity at high doses41,42, is a limitation of the therapeutic 
oxime dose and the resulting in vivo oxime concentra-
tion. Consequently, recommended therapeutic obidoxi-
me and pralidoxime concentrations are in the range of 
10–20 and 100 µM, respectively3,36.

The relationship between the affinity towards na-
tive and OP-inhibited human AChE was investigated 
by Pang and co-workers with a homologous series of 
alkylene-linked bis-pyridinium aldoximes, i.e. Ortho-3 
to Ortho-943. It could be shown that the increase of affin-
ity of the oximes towards diethyl-phosphoryl-inhibited 
AChE, i.e. K

D
 from 21 (Ortho-3) to 0.6 µM (Ortho-9), was 

accompanied by an increasing inhibitory potency of the 
compounds, i.e. K

i
 from 65 (Ortho-3) to 0.3 µM (Ortho-9). 

Consequently, the LD
50

 of Ortho-7 (K
i
 1.3 µM) was less 

than 5 µmol/kg in rats44 while the LD
50

 of pralidoxime in 
rats is approximately 1 mmol/kg42.

These data demonstrate that a simultaneous increase 
of oxime affinity towards native and OP-inhibited AChE 
in the absence of a substantial increase in reactivity does 
not necessarily result in an improved therapeutic benefit 
due to the reduced side effect-free oxime concentration. 
Desirable would be a selective affinity of an oxime to-
wards OP-inhibited AChE, a requirement that seems dif-
ficult to be accomplished in view of the huge number of 
structurally different OP.

Conclusions

The theoretical considerations based on the kinetic 
properties of oximes indicate that oximes presently used 
clinically (obidoxime, pralidoxime) or under develop-
ment for human use (HI-6, MMB-4) should be adequate 
reactivators for a larger number of OP pesticides and 
nerve agents. Established and experimental oximes are 
inadequate against particular OP, e.g. tabun, fenamiphos, 
and methylfluorophosphonylcholines, due to low affin-
ity and reactivity. Future developments of more effective 
oximes should consider kinetic demands by attempting 
to achieve an at least moderate reactivity and affinity, 

preferentially towards OP-inhibited AChE. A minimal 
k

r
 of 0.1 min−1 and a K

D
 lower than 100 µM would be the 

minimal requirements for a rapid and sufficient reactiva-
tion of inhibited AChE.

The availability of effective reactivators does not 
necessarily imply that such oximes are effective anti-
dotes in vivo. Presence of high OP concentrations, e.g. 
in intentional self-poisoning by pesticides, may lead to 
re-inhibition of reactivated AChE thus impairing net re-
activation45. In addition, premature and ongoing aging of 
OP-inhibited AChE affects oxime effectiveness46. Finally, 
the in vivo efficacy of oximes is significantly determined 
by a proper dosing and an adequate duration of oxime 
administration26.
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